miércoles, 14 de noviembre de 2012

La electricidad

LA ELECTRICIDAD

 

Historia de la electricidad

 
La historia de la electricidad como rama de la física comenzó con observaciones aisladas y simples especulaciones o intuiciones médicas, como el uso de peces eléctricos en enfermedades como la gota y el dolor de cabeza, u objetos arqueológicos de interpretación discutible, como la batería de Bagdad. Tales de Mileto fue el primero en observar los fenómenos eléctricos cuando, al frotar una barra de ámbar con un paño, notó que la barra podía atraer objetos livianos.
 
Mientras la electricidad era todavía considerada poco más que un espectáculo de salón, las primeras aproximaciones científicas al fenómeno fueron hechas en los siglos XVII y XVIII por investigadores sistemáticos como Gilbert, von Guericke, Henry Cavendish, Du Fay, van Musschenbroek y Watson. Estas observaciones empiezan a dar sus frutos con Galvani, Volta, Coulomb y Franklin, y, ya a comienzos del siglo XIX, con Ampère, Faraday y Ohm. No obstante, el desarrollo de una teoría que unificara la electricidad con el magnetismo como dos manifestaciones de un mismo fenómeno no se alcanzó hasta la formulación de las ecuaciones de Maxwell en 1865.
 
Los desarrollos tecnológicos que produjeron la primera revolución industrial no hicieron uso de la electricidad. Su primera aplicación práctica generalizada fue el telégrafo eléctrico de Samuel Morse (1833), que revolucionó las telecomunicacione. La generación masiva de electricidad comenzó cuando, a fines del siglo XIX, se extendió la iluminación eléctrica de las calles y las casas. La creciente sucesión de aplicaciones que esta forma de la energía produjo hizo de la electricidad una de las principales fuerzas motrices de la segunda revolución industrial. Fue éste el momento de grandes inventores como Gramme, Westinghouse, von Siemens y Alexander Graham Bell. Entre ellos destacaron Nikola Tesla y Thomas Alva Edison, cuya revolucionaria manera de entender la relación entre investigación y mercado capitalista convirtió la innovación tecnológica en una actividad industrial.
 

Conceptos

Carga eléctrica

Interacciones entre cargas de igual y distinta naturaleza.
La carga en un electroscopio causa que las láminas se repelan entre sí.
La carga eléctrica es una propiedad de la materia que produce una fuerza cuando tiene cerca otra materia cargada eléctricamente. La carga se origina en el átomo, el cual tiene portadores muy comunes que son el electrón y el protón. Es una cantidad conservadora, es decir, la carga neta de un sistema aislado se mantendrá constante, a menos que una carga externa se desplace a ese sistema.[] En el sistema, la carga puede transferirse entre los cuerpos por contacto directo, o al pasar por un material conductor, como un cable. El término electricidad estática hace referencia a la presencia de carga en un cuerpo, por lo general causado por que dos materiales distintos se frotan entre sí, transfiriéndose carga uno al otro.
La presencia de carga da lugar a la fuerza electromagnética: una carga ejerce una fuerza sobre las otras, un efecto que era conocido en la antigüedad, pero no comprendido. Una bola liviana, suspendida de un hilo, podía cargarse al contacto con una barra de vidrio cargada previamente por fricción con un tejido. Se encontró que si una bola similar se cargaba con la misma barra de vidrio, se repelían entre sí. Este fenómeno fue investigado a finales del siglo XVIII por Charles-Augustin de Coulomb, que dedujo que la carga se manifiesta de dos formas opuestas. Este descubrimiento trajo el conocido axioma "objetos con la misma polaridad se repelen y con diferente polaridad se atraen".
La fuerza actúa en las partículas cargadas entre sí, y además la carga tiene una tendencia a extenderse sobre una superficie conductora. La magnitud de la fuerza electromagnética, ya sea atractiva o repulsiva, se expresa por la ley de Coulomb, que relaciona la fuerza con el producto de las cargas y tiene una relación inversa al cuadrado de la distancia entre ellas. La fuerza electromagnética es muy fuerte, la segunda después de la interacción nuclear fuerte[] ,con la diferencia que esa fuerza opera sobre todas las distancias.[] En comparación con la débil fuerza gravitacional, la fuerza electromagnética que aleja a dos electrones es 10 veces más grande que la atracción gravitatoria que los une.[]
Las cargas de los electrones y de los protones tienen signos contrarios, además una carga puede ser expresada como positiva o negativa. Por convención, la carga que tiene electrones se asume negativa y la de los protones positiva, una costumbre que empezó con el trabajo de Benjamín Franklin.[] La cantidad de carga está dada por el símbolo Q y se expresa en Culombios.[] Los electrones tienen la misma carga de aproximadamente -1.6022×10-19 culombios. El protón tiene una carga que es igual y opuesta +1.6022×10-19 coulombios. La carga no sólo está presente en la materia, sino también por la antimateria, cada antipartícula tiene una carga igual y opuesta a su correspondiente partícula.[]
La carga puede medirse de diferentes maneras, un instrumento muy antiguo es el electroscopio, que aunque todavía se usa para demostraciones en los salones de clase, ha sido superado por el electrómetro electrónico.
Corriente eléctrica
File:Lichtbogen 3000 Volt.jpg

 
Un arco eléctrico provee una demostración energética de la corriente eléctrica
Se conoce como corriente eléctrica al movimiento de cargas eléctricas. La corriente puede estar producida por cualquier partícula cargada eléctricamente en movimiento; lo más frecuente es que sean electrones, pero cualquier otra carga en movimiento produce una corriente. La intensidad de una corriente eléctrica se mide en amperios, cuyo símbolo es A.
Históricamente, la corriente eléctrica se definió como un flujo de cargas positivas y se fijó como sentido convencional de circulación de la corriente el flujo de cargas desde el polo positivo al negativo. Más adelante se observó, que en los metales los portadores de carga son electrones, con carga negativa, y que se desplazan en sentido contrario al convencional. Lo cierto es que, dependiendo de las condiciones, una corriente eléctrica puede consistir de un flujo de partículas cargadas en una dirección, o incluso en ambas direcciones al mismo tiempo. La convención positivo-negativo es ampliamente usada para simplificar esta situación.
El proceso por el cual la corriente eléctrica circula por un material se llama conducción eléctrica, y su naturaleza varía dependiendo de las partículas cargadas y el material por el cual están circulando. Son ejemplos de corrientes eléctricas la conducción metálica, donde los electrones recorren un conductor eléctrico, como el metal, y la electrólisis, donde los iones (átomos cargados) fluyen a través de líquidos. Mientras que las partículas pueden moverse muy despacio, algunas veces con una velocidad media de deriva de sólo fracciones de milímetro por segundo, el campo eléctrico que las controla se propaga cerca a la velocidad de la luz, permitiendo que las señales eléctricas se transmitan rápidamente por los cables.
La corriente produce muchos efectos visibles, que han hecho que se reconozca su presencia a lo largo de la historia. En 1800, Nicholson y Carlisle descubrieron que el agua podía descomponerse por la corriente de una pila voltaica en un proceso que se conoce como electrólisis; trabajo que posteriormente fue ampliado por Michael Faraday en 1833. La corriente a través de una resistencia eléctrica produce un aumento de la temperatura, un efecto que James Prescott Joule estudió matemáticamente en 1840 (ver efecto Joule).
Campo eléctrico
File:Field lines.svg
 
Líneas de campo saliendo de una carga positiva hacia un conductor plano.
El concepto de campo eléctrico fue introducido por Michael Faraday. Un campo eléctrico se crea por un cuerpo cargado en el espacio que lo rodea, y produce una fuerza que ejerce sobre otras cargas que están ubicadas en el campo. Un campo eléctrico actúa entre dos cargas de modo muy parecido al campo gravitacional que actúa sobre dos masas, y como tal, se extiende hasta el infinito y su valor es inversamente proporcional al cuadrado de la distancia.
Sin embargo, hay una diferencia importante: así como la gravedad siempre actúa como atracción, que el campo eléctrico puede producir atracción o repulsión. Si un cuerpo grande como un planeta no tiene carga neta, el campo eléctrico a una distancia determinada es cero. Por ello la gravedad es la fuerza dominante en el universo, a pesar de ser mucho más débil.
Un campo eléctrico varía en el espacio, y su fuerza en cualquier punto se define como la fuerza (por unidad de carga) que se necesita para que una carga esté inmóvil en ese punto. La carga de prueba debe de ser insignificante para evitar que su propio campo afecte el campo principal y también debe ser estacionaria para evitar el efecto de los campos magnéticos. Como el campo eléctrico se define en términos de fuerza, y una fuerza es un vector, entonces el campo eléctrico también es un vector, con magnitud y dirección. Específicamente, es un campo vectorial.
Potencial eléctrico
File:Panasonic-oxyride.jpg
 
Un par de pilas AA. El signo + indica la polaridad de la diferencia de potencial entre las terminales de la batería.
El concepto de potencial eléctrico tiene mucha relación con el campo eléctrico. Una caga pequeña ubicada en un campo eléctrico experimenta una fuerza, y para haber llevado esa carga a ese punto en contra de la fuerza se necesito trabajo. El potencial eléctrico en cualquier punto se define como la energía requerida para mover una carga de prueba ubicada en el infinito a ese punto. Por lo general se mide en voltios, donde un voltio es el potencia en el que un julio (unidad) de trabajo debe gastarse para traer una carga de un culombio del infinito. Esta definición formal de potencial tiene una aplicación práctica, aunque un concepto más útil es el de diferencia de potencial, y es la energía requerida para mover una carga entre dos puntos específicos. El campo eléctrico tiene la propiedad especial de ser conservativo, es decir que no importa la trayectoria realizada por la carga de prueba; todas las trayectorias de dos puntos específicos consumen la misma energía, y además con un único valor de diferencia de potencial. El voltio está tan identificado como la unidad de elección de medida y descripción de la diferencia de potencial que el término voltaje se usa frecuentemente en la vida diaria.
Electromagnetismo
File:Electric motor cycle 3.png
 
Fluido ferroso que se agrupa cerca de los polos de un imán o magneto.
File:Ferrofluid poles.jpg
 
El motor eléctrico aprovecha un efecto importante del electromagnetismo: una corriente a través de un campo magnético experimenta una fuerza en el mismo ángulo del campo y la corriente.
Se denomina electromagnetismo a la teoría física que unifica los fenómenos eléctricos y magnéticos en una sola teoría, cuyos fundamentos son obra de Faraday, pero fueron formulados por primera vez de modo completo por Maxwell. La formulación consiste en cuatro ecuaciones diferenciales vectoriales, conocidas como ecuaciones de Maxwell, que relacionan el campo eléctrico, el campo magnético y sus respectivas fuentes materiales: densidad de carga eléctrica, corriente eléctrica, desplazamiento eléctrico y corriente de desplazamiento.
A principios del siglo XIX Ørsted encontró evidencia empírica de que los fenómenos magnéticos y eléctricos estaban relacionados. A partir de esa base Maxwell unificó en 1861 los trabajos de físicos como Ampère, Sturgeon, Henry, Ohm y Faraday, en un conjunto de ecuaciones que describían ambos fenómenos como uno solo, el fenómeno electromagnético.
Se trata de una teoría de campos; las explicaciones y predicciones que provee se basan en magnitudes físicas vectoriales y son dependientes de la posición en el espacio y del tiempo. El electromagnetismo describe los fenómenos físicos macroscópicos en los que intervienen cargas eléctricas en reposo y en movimiento, usando para ello campos eléctricos y magnéticos y sus efectos sobre la materia. Para la descripción de fenómenos a nivel molecular, atómico o corpuscular, es necesario emplear las expresiones clásicas de la energía electromagnética conjuntamente con las de la mecánica cuántica.
 
Las ecuaciones de Maxwell describen los campos eléctricos y magnéticos como manifestaciones de un solo campo electromagnético. Además, explican la naturaleza ondulatoria de la luz como parte de una onda electromagnética. Al contar con una teoría unificada consistente que describiera estos dos fenómenos antes separados, se pudieron realizar varios experimentos novedosos e inventos muy útiles, como el generador de corriente alterna inventado por Tesla. El éxito predictivo de la teoría de Maxwell y la búsqueda de una interpretación coherente con el experimento de Michelson y Morley llevó a Einstein a formular la teoría de la relatividad, que se apoyaba en algunos resultados previos de Lorentz y Poincaré.
Esta unificación es fundamental para describir las relaciones que existen entre los campos eléctricos variables que se utilizan en la vida diaria —como la corriente alterna utilizada en las redes eléctricas domésticas— y los campos magnéticos que inducen. Entre otras aplicaciones técnicas, se utiliza para el cálculo de antenas de telecomunicaciones y de circuitos eléctricos o electrónicos en los que hay campos eléctricos y magnéticos variables que se generan mutuamente.
Circuitos
 
 
Un circuito eléctrico básico. La fuente de tensión V en la izquierda provee una corriente I al circuito, entregándole energía eléctrica al resistor R. Del resistor, la corriente regresa a la fuente, completando el circuito.
Circuito eléctrico y Análisis de circuitos.
Un circuito eléctrico es una interconexión de componentes eléctricos tales que la carga eléctrica fluye en un camino cerrado, por lo general para ejecutar alguna tarea útil.
Los componentes en un circuito eléctrico pueden ser muy variados, puede tener elementos como resistores, capacitores, interruptores, transformadores y electrónicos. Los circuitos electrónicos contienen componentes activos, normalmente semiconductores, exhibiendo un comportamiento no lineal, necesitando análisis complejos. Los componentes eléctricos más simples son los pasivos y lineales.
El comportamiento de los circuitos eléctricos que contienen solamente resistencias y fuentes electromotrices de corriente continua está gobernado por las Leyes de Kirchoff. Para estudiarlo, el circuito se descompone en mallas eléctricas, estableciendo un sistema de ecuaciones lineales cuya resolución brinda los valores de los voltajes y corrientes que circulan entre sus diferentes partes.
La resolución de circuitos de corriente alterna requiere la ampliación del concepto de resistencia eléctrica, ahora ampliado por el de impedancia para incluir los comportamientos de bobinas y condensadores. La resolución de estos circuitos puede hacerse con generalizaciones de las leyes de Kirchoff, pero requiere usualmente métodos matemáticos avanzados, como el de Transformada de Laplace, para describir los comportamientos transitorios y estacionarios de los mismos.
Propiedades eléctricas de los materiales
File:Atomo di rame.svg
 
Configuración electrónica del átomo de cobre. Sus propiedades conductoras se deben a la facilidad de circulación que tiene su electrón más exterior (4s).
Origen microscópico
La posibilidad de generar corrientes eléctricas en los materiales depende de la estructura e interacción de los átomos que los componen. Los átomos están constituidos por partículas cargadas positivamente (los protones), negativamente (los electrones) y neutras (los neutrones). La conducción eléctrica de los materiales sólidos, cuando existe, se debe a los electrones de la órbita exterior, ya que tanto los electrones interiores como los protones de los núcleos atómicos no pueden desplazarse con facilidad. Los materiales conductores por excelencia son metales, como el cobre, que usualmente tienen un único electrón en la última capa electrónica. Estos electrones pueden pasar con facilidad a átomos contiguos, constituyendo los electrones libres responsables del flujo de corriente eléctrica. En otros materiales sólidos los electrones se liberan con dificultad constituyendo semiconductores, cuando la liberación puede ser producida por excitación térmica, o aisladores, cuando no se logra esta liberación.
Los mecanismos microscópicos de conducción eléctrica son diferentes en los materiales superconductores y en los líquidos. En los primeros, a muy bajas temperaturas y como consecuencia de fenómenos cuánticos, los electrones no interaccionan con los átomos desplazándose con total libertad (resistividad nula). En los segundos, como en los electrólitos de las baterías eléctricas, la conducción de corriente es producida por el desplazamiento de átomos o moléculas completas ionizadas de modo positivo o negativo. Los materiales superconductores se usan en imanes superconductores para la generación de elevadísimos campos magnéticos.
En todos los materiales sometidos a campos eléctricos se modifican, en mayor o menor grado, las distribuciones espaciales relativas de las cargas negativas (electrones) y positivas (núcleos atómicos). Este fenómeno se denomina polarización eléctrica y es más notorio en los aisladores eléctricos debido a la ausencia de apantallamiento del campo eléctrico aplicado por los electrones libres.
Conductividad y resistividad
File:Stranded lamp wire.jpg
 
Conductor eléctrico de cobre.
La conductividad eléctrica es la propiedad de los materiales que cuantifica la facilidad con que las cargas pueden moverse cuando un material es sometido a un campo eléctrico. La resistividad es una magnitud inversa a la conductividad, aludiendo al grado de dificultad que encuentran los electrones en sus desplazamientos, dando una idea de lo buen o mal conductor que es. Un valor alto de resistividad indica que el material es mal conductor mientras que uno bajo indicará que es un buen conductor. Generalmente la resistividad de los metales aumenta con la temperatura, mientras que la de los semiconductores disminuye ante el aumento de la temperatura.
Los materiales se clasifican según su conductividad eléctrica o resistividad en conductores, dieléctricos, semiconductores y superconductores.
    Conductores eléctricos. Son los materiales que, puestos en contacto con un cuerpo cargado de electricidad, transmiten ésta a todos los puntos de su superficie. Los mejores conductores eléctricos son los metales y sus aleaciones. Existen otros materiales, no metálicos, que también poseen la propiedad de conducir la electricidad, como son el grafito, las soluciones salinas (por ejemplo, el agua de mar) y cualquier material en estado de plasma. Para el transporte de la energía eléctrica, así como para cualquier instalación de uso doméstico o industrial, el metal más empleado es el cobre en forma de cables de uno o varios hilos. Alternativamente se emplea el aluminio, metal que si bien tiene una conductividad eléctrica del orden del 60% de la del cobre es, sin embargo, un material mucho menos denso, lo que favorece su empleo en líneas de transmisión de energía eléctrica en las redes de alta tensión. Para aplicaciones especiales se utiliza como conductor el oro.[]
    Dieléctricos. Son los materiales que no conducen la electricidad, por lo que pueden ser utilizados como aislantes. Algunos ejemplos de este tipo de materiales son vidrio, cerámica, plásticos, goma, mica, cera, papel, madera seca, porcelana, algunas grasas para uso industrial y electrónico y la baquelita. Aunque no existen materiales absolutamente aislantes o conductores, sino mejores o peores conductores, son materiales muy utilizados para evitar cortocircuitos (forrando con ellos los conductores eléctricos, para mantener alejadas del usuario determinadas partes de los sistemas eléctricos que, de tocarse accidentalmente cuando se encuentran en tensión, pueden producir una descarga) y para confeccionar aisladores (elementos utilizados en las redes de distribución eléctrica para fijar los conductores a sus soportes sin que haya contacto eléctrico). Algunos materiales, como el aire o el agua, son aislantes bajo ciertas condiciones pero no para otras. El aire, por ejemplo, es aislante a temperatura ambiente pero, bajo condiciones de frecuencia de la señal y potencia relativamente bajas, puede convertirse en conductor.
La conductividad se designa por la letra griega sigma minúscula ( ) y se mide en siemens por metro, mientras que la resistividad se designa por la letra griega rho minúscula (ρ) y se mide en ohms por metro (Ω•m, a veces también en Ω•mm²/m).
Producción y usos de la electricidad
Generación y transmisión

 
File:Turbine aalborg.jpg
 
La energía eólica está tomando importancia en muchos países.
Hasta la invención de la pila voltaica en el siglo XVIII (Volta, 1800) no se tenía una fuente viable de electricidad. La pila voltaica y su descendiente moderna, la batería eléctrica, almacenaba energía químicamente y la entregaba según la demanda en forma de energía eléctrica. La batería es una fuente común muy versátil que se usa para muchas aplicaciones, pero su almacenamiento de energía es limitado, y una vez descargado debe ser reemplazada o descargada. Para una demanda eléctrica mucho más grande la energía debe ser generada y transmitida continuamente sobre líneas de transmisión conductivas.
Por lo general, la energía eléctrica se genera mediante generadores electromecánicos movidos por el vapor producido por combustibles fósiles, o por el calor generado por reacciones nucleares, o de otras fuentes como la energía cinética extraída del viento o el agua. La moderna turbina de vapor inventada por Charles Algernon Parsons en 1884 genera cerca del 80% de la energía eléctrica en el mundo usando una gran variedad de fuentes de calentamiento. Este generador no tiene ningún parecido al generador de disco homopolar de Faraday, aunque ambos funcionan bajo el mismo principio electromagnético, que dice que al cambiar el campo magnético a un conductor produce una diferencia de potencial en sus terminales. La invención a finales del siglo XIX del transformador implicó transmitir la energía eléctrica de una forma más eficiente. La transmisión eléctrica eficiente hizo posible generar electricidad en plantas generadoras, para entonces ser trasportada a largas distancias, donde fuera necesaria.
Debido a que la energía eléctrica no puede ser almacenada fácilmente para atender la demanda a una escala nacional, la mayoría de las veces se produce la misma cantidad que la que se demanda. Esto requiere de una bolsa eléctrica que hace predicciones de la demanda eléctrica, y mantiene una coordinación constante con las plantas generadoras. Una cierta cantidad de generación debe mantenerse en reserva para soportar cualquier anomalía en la red.
La demanda de la electricidad crece con una gran rapidez si una nación se moderniza y su economía se desarrolla. Estados Unidos tuvo un aumento del 12% anual de la demanda en las tres primeras décadas del siglo XX, una tasa de crecimiento que es similar a las economías emergentes como India o China. Históricamente, la tasa de crecimiento de la demanda eléctrica ha superado a otras formas de energía.
Las preocupaciones medioambientales con la generación de energía eléctrica han hecho que la producción se dirija a las energías renovables, en particular la energía eólica e hidráulica. Mientras el debate continúe sobre el impacto medioambiental de diferentes tipos de producción eléctrica, su forma final será relativamente limpia.
Aplicaciones de la electricidad
La electricidad tiene un sinfín de aplicaciones tanto para uso doméstico, industrial, medicinal y en el transporte. Solo para citar se puede mencionar a la electrónica, Generador eléctrico, Motor eléctrico, Transformador, Maquinas frigoríficas, aire acondicionado, electroimanes, Telecomunicaciones, Electroquímica, electrovalvulas, Iluminación y alumbrado, Producción de calor, Electrodomésticos, Robótica, Señales luminosas. También se aplica la inducción electromagnética para la construcción de motores movidos por energía eléctrica, que permiten el funcionamiento de innumerables dispositivos.
Electricidad en la naturaleza
Mundo inorgánico
Descargas eléctricas atmosféricas
El fenómeno eléctrico más común del mundo inorgánico son las descargas eléctricas atmosféricas denominadas rayos y relámpagos. Debido al rozamiento de las partículas de agua o hielo con el aire, se produce la creciente separación de cargas eléctricas positivas y negativas en las nubes, separación que genera campos eléctricos. Cuando el campo eléctrico resultante excede el de ruptura dieléctrica del medio, se produce una descarga entre dos partes de una nube, entre dos nubes diferentes o entre la parte inferior de una nube y tierra. Esta descarga ioniza el aire por calentamiento y excita transiciones electrónicas moleculares. La brusca dilatación del aire genera el trueno, mientras que el decaimiento de los electrones a sus niveles de equilibrio genera radiación electromagnética, luz.
Son de origen similar las centellas y el fuego de San Telmo. Este último es común en los barcos durante las tormentas y es similar al efecto corona que se produce en algunos cables de alta tensión.
El daño que producen los rayos a las personas y sus instalaciones puede prevenirse derivando la descarga a tierra, de modo inocuo, mediante pararrayos.
Campo magnético terrestre
 
Aurora boreal.
Aunque no se puede verificar experimentalmente, la existencia del campo magnético terrestre se debe casi seguramente a la circulación de cargas en el núcleo externo líquido de la Tierra. La hipótesis de su origen en materiales con magnetización permanente, como el hierro, parece desmentida por la constatación de las inversiones periódicas de su sentido en el transcurso de las eras geológicas, donde el polo norte magnético es remplazado por el sur y viceversa. Medido en tiempos humanos, sin embargo, los polos magnéticos son estables, lo que permite su uso, mediante el antiguo invento chino de la brújula, para la orientación en el mar y en la tierra.
El campo magnético terrestre desvía las partículas cargadas provenientes del Sol (viento solar). Cuando esas partículas chocan con los átomos y moléculas de oxígeno y nitrógeno de la magnetosfera, se produce un efecto fotoeléctrico mediante el cual parte de la energía de la colisión excita los átomos a niveles de energía tales que cuando dejan de estar excitados devuelven esa energía en forma de luz visible. Este fenómeno puede observarse a simple vista en las cercanías de de los polos, en las auroras polares.
Mundo orgánico
El bioelectromagnetismo (a veces denominado parcialmente como bioelectricidad o biomagnetismo) es el fenómeno biológico presente en todos los seres vivos, incluidas todas las plantas y los animales, consistente en la producción de campos electromagnéticos (se manifiesten como eléctricos o magnéticos) producidos por la materia viva (células, tejidos u organismos). Los ejemplos de este fenómeno incluyen el potencial eléctrico de las membranas celulares y las corrientes eléctricas que fluyen en nervios y músculos como consecuencia de su potencial de acción. No debe confundirse con la bioelectromagnética, que se ocupa de los efectos de una fuente externa de electromagnetismo sobre los organismos vivos.
Impulso nervioso
 
Grabado antiguo mostrando la excitación del nervio crural de una rana mediante una máquina electrostática.
El fenómeno de excitación de los músculos de las patas de una rana, descubierto por Galvani, puso en evidencia la importancia de los fenómenos eléctricos en los organismos vivientes. Aunque inicialmente se pensó que se trataba de una clase especial de electricidad, se verificó gradualmente que estaban en juego las cargas eléctricas usuales de la física. En los organismos con sistema nervioso las neuronas son los canales por los que se trasmiten a los músculos las señales que mandan su contracción y relajación. Las neuronas también transmiten al cerebro las señales de los órganos internos, de la piel y de los transductores que son los órganos de los sentidos, señales como dolor, calor, textura, presión, imágenes, sonidos, olores y sabores. Los mecanismos de propagación de las señales por las neuronas, sin embargo, son muy diferentes del de conducción de electrones en los cables eléctricos. Consisten en la modificación de la concentración de iones de sodio y de potasio a ambos lados de una membrana celular. Se generan así diferencias de potencial, variables a lo largo del interior de la neurona, que varían en el tiempo propagándose de un extremo al otro de la misma con altas velocidades.
 
Los pequeños hoyos en la cabeza de este lucio contiene neuromastos del sistema de la línea lateral.
 
El pez torpedo es uno de los "fuertemente eléctricos".
Véase también: Galvanismo.
Uso biológico
Muchos peces y unos pocos mamíferos tienen la capacidad de detectar la variación de los campos eléctricos en los que están inmersos, entre los que se cuentan los teleostei, las rayas []y los ornitorrincos. Esta detección es hecha por neuronas especializadas llamadas neuromastos,[] que en los gimnótidos están ubicadas en la línea lateral del pez.
La localización por medios eléctricos (electrorrecepción) puede ser pasiva o activa. En la localización pasiva el animal sólo detecta la variación de los campos eléctricos circundantes, pero no los genera. Los "peces poco eléctricos" son capaces de generar campos eléctricos débiles gracias a órganos y circuitos especiales de neuronas, cuya única función es detectar variaciones del entorno y comunicarse con otros miembros de su especie. Los voltajes generados son inferiores a 1 V y las características de los sistemas de detección y control varían grandemente de especie a especie.
Algunos peces, como las anguilas y las rayas eléctricas son capaces de producir grandes descargas eléctricas con fines defensivos u ofensivos, son los llamados peces eléctricos. Estos peces, también llamados "peces fuertemente eléctricos", pueden generar voltajes de hasta 2.000 V y corrientes superiores a 1 A. Entre los peces eléctricos se cuentan los Apteronotidae, Gymnotidae, Electrophoridae, Hypopomidae, Rhamphichthyidae, Sternopygidae, Gymnarchidae, Mormyridae y Malapteruridae.[]
 
 
 
 

Usos de la Electricidad

Electricidad: usos y conversión

¿Para qué usamos la electricidad?
Debido a su capacidad de adaptación, en el mundo moderno no existe ninguna actividad económica que no utilice la electricidad.
ElectricidadUsos001
Fundamental en las fábricas.
En las fábricas
La electricidad tiene muchos usos en las fábricas: se utiliza para mover motores, para obtener calor y frío, para procesos de tratamiento de superficies mediante electrólisis, etc.
Una circunstancia reciente es que la industria no sólo es una gran consumidora de electricidad, sino que, gracias a la cogeneración, también empieza a ser productora.
En el transporte
Gran parte del transporte público (y dentro de él los ferrocarriles y los metros) emplea energía eléctrica. No obstante, se lleva ya tiempo trabajando en versiones eléctricas de los vehículos de gasolina, pues supondrían una buena solución para los problemas de contaminación y ruido que genera el transporte en las ciudades. Incluso es posible (aunque no habitual) emplear la electricidad para hacer volar un avión.
electricidadUsos002El aparato de la izquierda, diseñado por la NASA y AeroVironment, convierte energía solar en energía mecánica para volar como un aeroplano, usando la electricidad.
El avión está diseñado para moverse a unos 30 km de altura, a una velocidad de 40 km/h. Tiene un peso de 700 kg, incluyendo unos 100 kg de carga útil. Se cree que podrá sustituir a los satélites en muchas aplicaciones (teledetección y telecomunicaciones).
En la agricultura

Especialmente para los motores de riego, usados para elevar agua desde los acuíferos, y para otros usos mecánicos.

En los hogares

La electricidad se utiliza en los hogares para usos térmicos (calefacción, aire acondicionado, agua caliente y cocina), en competencia con otros combustibles como el butano, el gasóleo, el carbón y el gas natural, siendo la única energía empleada para la iluminación y los electrodomésticos.
Ver: Instalación eléctrica en el hogar
En el comercio, la administración y los servicios públicos
De manera similar a como se utiliza en el hogar, en estos sectores se ha ampliado su uso con la cada vez mayor aplicación de sistemas de procesamiento de la información y de telecomunicaciones, que necesitan electricidad para funcionar.
En medicina
electricidadUsos003
Electricidad y medicina.
"Tendencias", una revista electrónica de Ciencias, publicó el 14 de marzo de 2008 lo siguiente:
"Aceleran la curación de heridas utilizando la electricidad
"Un equipo de científicos ha descubierto que aplicando señales eléctricas a las heridas se puede controlar el proceso natural de las células que actúan en estas situaciones, lo que significa que es posible dirigir el movimiento celular y la manera de curar las lesiones. Este equipo ha conseguido identificar los genes y moléculas que las células utilizan para detectar los campos eléctricos que “emiten” las heridas.”
Historia

El uso de la electricidad para tratar dolores de cabeza, parálisis, epilepsia y otras muchas dolencias se remonta a la Antigua Roma, donde se utilizaban peces con forma de manta (rayas) que poseen un aguijón con el que liberan descargas eléctricas.

Sin embargo, la literatura médica señala al alemán Johan Gottlob Kruger como el primer científico que teorizó sobre la posible utilidad de la electricidad en el ámbito médico, particularmente para recuperación de miembros paralizados.

Otro de los pioneros en este campo fue el físico norteamericano Edward Bancroft (1744-1820), quien probó descargas eléctricas como método terapéutico para pacientes con gota, dolor, parálisis, dolores de cabeza y fiebres.
El científico inglés George Adams (1.750-1.795) publicó a su vez en 1784 un trabajo sobre medicina y electricidad titulado Essay on Electricity: Explaining the Theory and Practice of that Useful Science, and the Mode of Applying it to Medical Purposes. En aquella época incluso se pensó en resucitar a los muertos a través de descargas eléctricas.

En el siglo XX proliferan distintos sistemas que supuestamente producen efectos terapéuticos mediante la electricidad. Min Zhao es autor de diversos artículos sobre las ventajas de la electricidad para tratamiento de enfermedades de la córnea, la división celular y determinados tratamientos vasculares.
¿Cómo la usamos?

La electricidad debe ser convertida en otras formas de energía para que se pueda realizar un trabajo útil. Hay cuatro formas de convertir la electricidad para su uso: Se puede convertir en movimiento, en calor o frío, en luz y en energía química.
Pero también se emplea para amplificar y procesar señales portadoras de información, en la gran rama de la electricidad aplicada que llamamos electrónica.
Conversión de la electricidad en movimiento: los motores eléctricos
electricidadUsos004
Los motores eléctricos convierten la energía eléctrica en energía mecánica y se encuentran en todas partes: en las locomotoras del ferrocarril, el compresor del refrigerador o en un mecanismo del reproductor de video. Se pueden construir en todos los tamaños imaginables, y son mucho más adaptables, silenciosos y menos contaminantes que los motores de vapor o de explosión, gasolina o diesel.
A la izquierda: Un motor eléctrico clásico desmontado, que permite ver sus partes fundamentales.


¿Cómo funciona un motor eléctrico?

Un motor eléctrico no es más que un generador funcionando a la inversa, que absorbe corriente eléctrica para producir movimiento.
electricidadUsos005
Conversión de la electricidad en energía térmica: calor y frío
electricidadUsos006La electricidad puede utilizarse para producir calor y frío: calefacción, refrigeración, aire acondicionado, agua caliente y cocina.

La gran resistencia que opone un cable muy fino al paso de la corriente eléctrica genera calor. Esta propiedad se usa en todo tipo de estufas y radiadores. Los hornos de microondas son algo más sofisticados: la corriente eléctrica induce la formación de ondas de alta frecuencia al pasar por un magnetrón.

Para producir frío, la electricidad debe seguir un camino distinto: un motor eléctrico que hace funcionar un compresor, parte de un circuito cerrado de circulación de un gas. El gas comprimido, al expandirse en otro compartimiento del circuito, roba calor de su entorno (por ejemplo, del interior de un frigorífico), provocando un enfriamiento. El gas es nuevamente comprimido y cede el calor que robó al exterior del aparato. El ciclo expansión-compresión prosigue indefinidamente.
Conversión de la electricidad en luz: iluminación
Existen dos métodos de producir luz a partir de la electricidad:
Las lámparas de incandescencia utilizan la propiedad de algunos materiales de emitir luz cuando la corriente eléctrica los calienta a elevadas temperaturas. Esto ocurre en el filamento de las ampolletas convencionales. Por desgracia, el proceso emite tanta luz como calor, por lo que es poco eficiente.electricidadUsos007


electricidadUsos008Las lámparas de fluorescencia aprovechan la propiedad de ciertos materiales de emitir luz cuando incide sobre ellos un flujo de electrones. El proceso es mucho más "frío" que en el caso anterior y, por lo tanto, más eficiente.
Conversión de la electricidad en energía química: electrólisis
La corriente eléctrica separa el sulfato de cobre en sus componentes. El cobre liberado es atraído por la carga eléctrica de la placa de metal y se deposita sobre ella como una fina capa de cobre metálico.electricidadUsos009
La electricidad sirve para procesar información: electrónica

Además de convertirse fácilmente en cualquier tipo de energía final que deseemos —movimiento, calor y frío, luz y energía química—, la electricidad es el vehículo imprescindible para transmitir, amplificar y procesar señales en radios, televisores, computadores y, en general, en todos los aparatos que soportan nuestra sociedad de la información.

Esto se consigue construyendo circuitos eléctricos de la complejidad requerida. Los circuitos reciben una señal de entrada —puede ser una onda de radio o una pulsación del teclado de un computador— y proporcionan una señal de salida modificada.

La modificación más simple puede ser amplificar la señal, para que una onda de radio débil que llega a nuestra cadena de música se convierta en un potente sonido saliendo de los altavoces. Entonces decimos que el circuito funciona como amplificador.

Algunas modificaciones más complejas de la señal de entrada, permiten realizar diversos cálculos. El ejemplo más sencillo es un circuito con dos interruptores en serie y otro que los coloca en paralelo. Ambos procesan la información de manera diferente y se llaman puertas lógicas ("puertas" con lógicas o comportamientos diferentes).

En la práctica, el procesado de información requiere de interruptores ultrarrápidos, capaces en encenderse y apagarse millares de veces por segundo. Esta es la función que cumplen los transistores.

Un paso más consiste en imprimir millones de transistores unidos por conexiones muy complejas sobre capas de materiales conductores. Entonces tenemos un chip.
Conectando a su vez millares de chips, y con la programación adecuada, podemos procesar las entradas de información al sistema de la manera que deseemos. El caso más simple puede ser sumar 1+1, obteniendo de salida "2". Los ordenadores más complicados son capaces de digerir millones de datos de presión, temperatura, velocidad del viento, etc., procedentes de distintos lugares, así como proporcionar mapas de pronósticos del tiempo a dos o tres días vista.electricidadUsos010

Aceleran la curación de heridas utilizando la electricidad

 
Es posible dirigir el movimiento celular y la manera de cicratizar las lesiones
 
Un equipo de científicos ha descubierto que aplicando señales eléctricas a las heridas se puede controlar el proceso natural de las células que actúan en estas situaciones, lo que significa que es posible dirigir el movimiento celular y la manera de curar las lesiones. Este equipo ha conseguido identificar los genes y moléculas que las células utilizan para detectar los campos eléctricos que “emiten” las heridas. De esta manera, si se aumenta la potencia de los iones, se incrementa el flujo de corriente eléctrica en las heridas, lo que produce una aceleración del proceso de curación porque acuden más células a la “llamada” de las señales eléctricas. El próximo paso es la realización de pruebas clínicas para saber si esta metodología puede aplicarse en la atención a los pacientes. Por Yaiza Martínez.
 

Electricity through your body. Luigi Marchesi.
Electricity through your body. Luigi Marchesi.     
Un equipo internacional de investigadores ha descubierto una novedosa manera de curar heridas: la electricidad. Se trata de científicos que estudian cómo las corrientes continuas de los campos eléctricos pueden ser aplicadas al cuerpo para controlar el comportamiento celular. Los resultados de esta investigación podrían generar métodos pioneros de tratamiento de heridas y otras lesiones del organismo humano.

El equipo, liderado por el profesor de la universidad escocesa de Aberdeen, Min Zhao, ha descubierto una pareja de proteínas y genes en células que juegan un papel esencial en las células para que éstas curen heridas, como respuesta a las señales eléctricas que se producen de manera natural en las lesiones.

Los científicos han descubierto asimismo que cuando aplican un campo eléctrico a una herida, se altera la “ruta” que siguen las células, que en un intento de reparar las heridas, se mueven alrededor de éstas. Variando el voltaje de los campos eléctricos se puede modificar la velocidad con la que una herida cicatriza, publica la universidad de Aberdeen en un comunicado.

El estudio ha demostrado, según Zhao, que la electricidad en el cuerpo es mucho más importante de lo que previamente se creía, y que podría ser utilizada para curar heridas e incluso para la regeneración celular.

El origen de la electrofisiología

Los primeros científicos de la historia que se dedicaron a estudiar los efectos de la electricidad sobre la biología fueron el italiano Luigi Galvani y el alemán Emil Du-Bois Reymond. El primero demostró, en 1780 y cuando se empezaba a conocer la electricidad, que la aplicación de corrientes eléctricas a las médulas espinales de las ranas producía que las extremidades de éstas se movieran. Lo denominó “electricidad animal”, y la identificó con la fuerza vital.

Emil Du-Bois Reymond, por su parte, es considerado el padre de la llamada electrofisiología (estudio de las propiedades eléctricas de las células y tejidos biológicos). Gracias a sus investigaciones acerca de la electricidad en los organismos, descubrió que en nervios y heridas existen corrientes eléctricas. Llegó a hacerse una herida en su propio brazo para medir las corrientes eléctricas que de forma natural emitía el cuerpo al lesionase.

Los trabajos de estos pioneros llevaron a comprender que la actividad eléctrica de los nervios de nuestro cuerpo es la base para ver, sentir y oír, así como para controlar la contracción muscular por la que podemos movernos.

Pero mientras la electrofisiología siguió desarrollándose como ciencia, el área de estudio de los campos eléctricos en la curación de heridas quedó relegada, señala Zhao.

Piel y córneas

Ahora, el equipo de investigación de Zhao se ha centrado en estudiar las heridas de piel y córnea en un laboratorio. El interés por ellas parte de la observación de cómo las células saben a dónde deben acudir cuando nos hacemos una herida, para curarla.

Los científicos han demostrado que aplicando señales eléctricas a las heridas, se puede controlar el proceso natural de las células en estas situaciones, lo que significa que es posible dirigir el movimiento celular y la manera de curar las lesiones.

¿Por qué se mueven las células hacia la herida para sanarla? El estudio ha conseguido identificar los genes y moléculas que las células utilizan para detectar los campos eléctricos que “emiten” las heridas. Este hecho ofrece una nueva perspectiva clínica que podría permitir acelerar la cicatrización de lesiones, así como desarrollar nuevas técnicas que potencien la curación y la dirijan.

Iones manipulados

Los campos eléctricos de las heridas son creados por el cuerpo gracias a iones que modifican la dirección de la carga eléctrica positiva o negativa de las moléculas del organismo. Los investigadores aplicaron productos químicos a las heridas que se sabía que incrementan o reducían los movimientos de los iones, cargados eléctricamente.

Según Zhao, este trabajo sería como controlar una batería: si se aumenta la potencia de los iones, se incrementa el flujo de corriente eléctrica en las heridas, lo que produce una aceleración del proceso de curación porque acuden más células a la “llamada” de las señales eléctricas.

El próximo paso que quieren dar los investigadores es la realización de pruebas clínicas para saber si esta metodología puede aplicarse en la atención a los pacientes. Zhao ha colaborado en esta investigación con científicos de América, Japón y Austria.

Electricidad y medicina

El uso de la electricidad para tratar dolores de cabeza, parálisis, epilepsia y otras muchas dolencias se remonta a la Antigua Roma, donde se utilizaban peces con forma de manta (rayas) que poseen un aguijón con el que liberan descargas eléctricas.

Sin embargo, la literatura médica señala al alemán Johan Gottlob Kruger como el primer científico que teorizó sobre la posible utilidad de la electricidad en el ámbito médico, particularmente para recuperación de miembros paralizados.

Tal como se explica en el artículo Electricidad y sociedad, otro de los pioneros en este campo fue el físico americano Edward Bancroft (1744-1820), quien probó descargas eléctricas como método terapéutico para pacientes con gota, dolor, parálisis, dolores de cabeza y fiebres.

El científico inglés George Adams (1.750-1.795) publicó a su vez en 1.784 un trabajo sobre medicina y electricidad titulado Essay on Electricity: Explaining the Theory and Practice of that Useful Science, and the Mode of Applying it to Medical Purposes. En aquella época incluso se pensó en resucitar a los muertos a través de descargas eléctricas.

En el siglo XX proliferan distintos sistemas que supuestamente producen efectos terapéuticos mediante la electricidad. Min Zhao es autor de diversos artículos anteriores sobre las ventajas de la electricidad para tratamiento de enfermedades de la córnea, la división celular y determinados tratamientos vasculares.     

como creamos electricidad